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In a recent Letter [1], Rao et. al. proposed a sim-
ple model describing martensites formation. In 2D, the
model is defined as follows: (i) Segments grow from seeds
that are nucleated in a bounded region; (ii) The tips of
these segments move with a constant velocity V until
they hit either another segment or the boundary; (iii)
Any tip grows in one of two possible orthogonal direc-
tions. There are two important limiting cases, uniform
nucleation and simultaneous nucleation. Uniform nucle-
ation with V =∞ can be viewed as a multifragmentation
process [2,3], and both result in similar patterns (com-
pare Figs. 2 of [1] and [3]). In the following Comment, we
obtain exact asymptotic properties of the uniform model
using the method of Ref. [3]. The process is characterized
by an infinite amount of scales and an infinite set of con-
served quantities, and thus exhibits multiscaling. These
findings disagree with the ordinary scaling behavior of
the segment length distribution reported in [1].

The case of uniform nucleation is equivalent to a
stochastic process where seeds appear uniformly in space
with unit rate, and grow with infinite velocity in the x or
the y directions with equal probabilities. For simplicity,
we choose the unit square as the transformed region. The
distribution function P (x1, x2, t), describing rectangles of
size x1 × x2 arising in this kinetic process, satisfies
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Performing the double Mellin transform, M(s1, s2, t) =∫
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2 P (x1, x2, t), Eq. (1) reduces to
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Indeed, the total area is M(2, 2, t) = 1 and the num-
ber of rectangles is N = M(1, 1, t) = 1 + t, in agree-
ment with (2). A remarkable feature of Eq. (2) is that
it implies the existence of an infinite number of conser-
vation laws. The moments M(s1, s2, t), with s1 and s2

on the hyperbola s−1
1 + s−1

2 = 1, are time-independent.
Thus, in addition to the conservation of the total area,
there is an infinite amount of hidden conserved integrals.
These integrals are in fact responsible for the absence
of simple scaling solutions. Indeed, a solution of the
form P (x1, x2, t) = twQ(tzx1, t

zx2) to Eq. (1) would im-
ply an infinite set of relations, w = z(s1 + s2) when
s−1

1 + s−1
2 = 1, which cannot be satisfied by just two

scaling exponents, w and z.

The moments of Eq. (2) are exactly solvable in terms
of generalized hypergeometric functions. However, we
present an asymptotic analysis since for sufficiently large
t ≡ N , the moments depend algebraically on time,
M(s1, s2, t) ∼ t−α(s1,s2). Substituting this form into
Eq. (2) yields α(s1, s2) + 1 = α(s1 + 1, s2 + 1). This
difference equation is solved subject to the boundary con-
ditions, α(s1, s2) = 0 on the hyperbola s−1
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and one finds
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The nontrivial nature of the asymptotic behavior is
demonstrated by evaluating moments such as 〈xn1
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∫
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example, the ratio 〈(x1x2)n〉/〈xn1 〉〈xn2 〉 ∼ t−(
√
n2+4−2),

depends asymptotically on time, while for a scaling dis-
tribution P (x1, x2, t) such a ratio would approach a non-
zero constant. The length distribution P (l, t) can be eas-
ily obtained from the size distribution using the evolution
equation ∂P (l, t)/∂t =

∫
dx1dx2x1x2P (x1, x2, t)[δ(l −

x1)+δ(l−x2)]/2. Hence, the corresponding Mellin trans-
form M(s, t) =

∫
dlls−1P (l, t) satisfies ∂M(s, t)/∂t =

M(s+1, 2, t). This is solved to find M(s, t) ∼ t1−α(s+1,1).
Substituting Eq. (3) gives

〈ln〉 ∼ 〈xn1 〉 ∼ t−(n+2−
√
n2+4)/2, (4)

rather than simple scaling 〈ln〉 ∼ t−n/2 [1]. Thus, the
length distribution is characterized by nontrivial expo-
nents. For example, one finds 〈l〉 ∼ t−(3−

√
5)/2 ∼ t−.382

and 〈l2〉 ∼ t2−
√

2 ∼ t−.586, as confirmed by simulations.
Since all the moments still show a power-law behavior, we
conclude that the model exhibits a multiscaling asymp-
totic behavior. In contrast with the general behavior,
moments of the area A = x1x2 follow ordinary scaling,
〈An〉 ∼ 〈A〉n ∼ t−n, and the area distribution function
approaches a simple scaling form P (A, t) ' t2e−At.
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